Provided for non-commercial research and educational use only.
Not for reproduction or distribution or commercial use.

PHYSICS LETTERS A

This article was originally published in a journal published by
Elsevier, and the attached copy is provided by Elsevier for the
author’s benefit and for the benefit of the author’s institution, for
non-commercial research and educational use including without
limitation use in instruction at your institution, sending it to specific
colleagues that you know, and providing a copy to your institution’s
administrator.

All other uses, reproduction and distribution, including without
limitation commercial reprints, selling or licensing copies or access,
or posting on open internet sites, your personal or institution’s
website or repository, are prohibited. For exceptions, permission
may be sought for such use through Elsevier’s permissions site at:

http://www.elsevier.com/locate/permissionusematerial


http://www.elsevier.com/locate/permissionusematerial

ELSEVIER

Available online at www.sciencedirect.com
*.” ScienceDirect

Physics Letters A 364 (2007) 396400

PHYSICS LETTERS A

www.elsevier.com/locate/pla

Nonlinear finite-time Lyapunov exponent and predictability

Ruiqgiang Ding, Jianping Li*

State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics,
Chinese Academy of Sciences, Beijing 100029, China

Received 7 December 2005; accepted 14 November 2006
Available online 14 December 2006

Communicated by A.P. Fordy

Abstract

In this Letter, we introduce a definition of the nonlinear finite-time Lyapunov exponent (FTLE), which is a nonlinear generalization to the
existing local or finite-time Lyapunov exponents. With the nonlinear FTLE and its derivatives, the limit of dynamic predictability in large classes

of chaotic systems can be efficiently and quantitatively determined.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The prediction of chaotic systems is a significant real-world
but challenging open problem [1-3]. By definition, chaotic sys-
tems display sensitive dependence on initial conditions: two
initially close trajectories can diverge exponentially in the phase
space with a rate given by the largest Lyapunov exponent A [4].
If the initial perturbation is of size §, and the accepted er-
ror tolerance, A, is still small, then the largest Lyapunov ex-
ponent A; gives a rough estimate of the predictability time:
T, ~ % In(%) [4-7].

However, reliance on the largest Lyapunov exponent, in most
situations, proves to be a considerable oversimplification [8].
By and large this is so because the largest Lyapunov exponent,
which we will call the global Lyapunov exponent, is defined
as the long-term average growth rate of a very small initial er-
ror. Often we are not primarily concerned with averages, and,
even when we are, we may be interested in short-term behav-
ior. Therefore various local or finite-time Lyapunov exponents
are proposed, which measure the short-term growth rate of
initial small perturbations [9-13]. Compared with the global
Lyapunov exponent, local or finite-time Lyapunov exponents
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characterize the nonuniform spatial organization and provide
information on the variation of predictability on chaotic attrac-
tors. But the existing local or finite-time Lyapunov exponents
are established on the basis of the infinitesimal uncertainties,
which essentially belong to linear error dynamics. Clearly, if
an uncertainty is large enough to invalidate the linear error dy-
namics, it is not applicable anymore to study the predictability
of chaotic systems by use of the existing local or finite-time
Lyapunov exponents. To determine the limit of predictability,
any proposed ‘local or finite-time Lyapunov exponent’ should
be defined with the respect to the nonlinear behaviors of non-
linear dynamical systems [14,15]. Recently, other definitions
based on the full nonlinear equations, such as the direct Lya-
punov exponent (DLE) [16] and the finite size Lyapunov ex-
ponent (FSLE) [17], have been introduced and applied to the
analysis of geophysical flows [18-21], giving interesting re-
sults.

In this Letter we first give a brief review of linear error dy-
namics and point out their limitations. Then, we introduce a de-
finition of the nonlinear finite-time Lyapunov exponent (FTLE).
The nonlinear FTLE measures the short-term growth rate of ini-
tial errors of nonlinear dynamical models without linearizing
the governing equations. Finally, we demonstrate the accuracy,
validation, and usefulness of the nonlinear FTLE in reflecting
the nonlinear behaviors of chaotic systems and quantifying their
predictability, by applying it to the logistic map.
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2. Linear error dynamics and limitations

Let us to consider an n-dimensional continuous-time dy-
namical system

dx(t)
o= F(X(1)), (1)

where X = (x1, X2, ...,x,)L and F is an n-dimensional vector
field. Let §(r) = X(¢) — Xo(¢) denote deviations from the fidu-
cial orbit Xq(#). Their evolution equations are given by

dé

i JX)d + G(X, 3), 2)

where J(X)8 are the tangent linear terms, J(X) denotes the
n x n Jacobian matrix, and G(X, §) are the high order nonlinear
terms of the perturbations §. Due to some difficulties in solving
the nonlinear problem, previous studies assume that the initial
perturbations are sufficiently small such that their evolution can
be governed approximately by the linear equations [4]:

dé

i J(X)é. 3)
Integrating the linearized equations along the fiducial orbit
yields the linear propagator, u(Xo,t), which evolves any in-
finitesimal initial error 8(0) forward for a time # to 8, (¢) [11]:

8, (1) = n(Xo, 1)8(0), “)
where Xo = X((0). Then the largest Lyapunov exponent is de-
fined as:
L. |18,
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where X(Xo, t) is the local or finite-time Lyapunov exponent,
which depends on the initial displacement in phase space Xo
and time ¢. The global Lyapunov exponent A; does not depend
on X/ because of ergodicity [22].

To illustrate the limitations of linear error dynamics, we turn
to the case of the Lorenz system [23]. We choose its standard
parameter values o = 10, r = 28, and b = 8/3, for which the
well-known “butterfly” attractor exists. Fig. 1 shows the linear
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Fig. 1. Linear (dashed line) and nonlinear (solid line) average growth of errors
in the Lorenz system as a function of time. The initial magnitude of errors
is 1075,

(with a linear approximation to Eq. (2)) and nonlinear (with-
out any approximation to Eq. (2)) average growth of errors in
the Lorenz system. It is illustrated that for the short time inter-
vals, there are only trivial differences between the linear and
nonlinear error evolutions. With the increasing time, nonlin-
ear error evolution begins to depart from the linear counterpart
and finally reaches saturation. However, linear error evolution
is characterized by continuous exponential growth. The results
show that the linear error dynamics hold only in the case of
initial errors infinitesimal and a finite time interval from initial
time, which are not applicable to the description of the process
from initially exponential growth to finally reach saturation for
sufficiently small errors. Also not applicable to the situations
that initial errors are not very small.

3. Nonlinear finite-time Lyapunov exponent

Without any approximation, the solutions of Eq. (2) can be
obtained by numerically integrating it along the fiducial orbit
between times fy and ¢, then

8,(1) = n(Xo, 8(0),1)(0), (6)

where 7(Xo, 8(0),¢) is defined as the nonlinear propagator,
which, as described by Eq. (6), propagates the initial error to
the time ¢ in the future. Then the nonlinear finite-time Lyapunov
exponent (FTLE) is defined as

1|18,
A(Xo0,8(0),7) = ;I ||8n(0)|| ’

where 1(Xp, 6(0), ) depends in general on the initial displace-
ment in phase space X, the initial error §(0), and time ¢, differ-
ent from the global Lyapunov exponent or the local Lyapunov
exponent defined by Eq. (5). For notational simplicity, let the
norm of error in phase space at time ¢ be §(t) = ||6(¢)||. The
nonlinear FTLE characterizes the growth of an initial perturba-
tion §(0) made at point Xy after a finite time ¢ evolution by the
dynamics. For a part of the phase space, the nonlinear FTLE
is sometimes positive and sometimes negative (even when the
global Lyapunov exponent might be positive). Because of the
lack of space, the main emphasis of our research is on the non-
linear characters of the nonlinear FTLE, while a more detailed
discussion of local properties of the nonlinear FTLE will be
given in the future. We therefore consider here only the average
of the exponent over the attractor. As the approximation of this
average we use averaging over a great number of orbits started
from different initial points on the attractor. To be sure that ini-
tial points belong to the attractor we choose them as different
points on the same orbit obtained by long time integration of
model equations. The mean nonlinear FTLE is given by

(7

A(8(0), 1) = (A(X0, 8(0), 1)) - (8)

where ( )y denotes the ensemble average of samples of large
enough size N (N — o0). The mean relative growth of initial
error (RGIE) can be obtained by

E(8(0), 1) = exp(A(8(0), 1)t). 9)
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Main theorem. Assume that the independent random variables

X1, X2, ..., Xy, have the following probability distribution:
p(x), e<x<a,

f@)Z{ (10)
0, x<egorx>a,

where ¢ is an arbitrary small positive number, a is a positive
constant, and p(x) is a continuous function defined on a closed
interval (¢, a). Let Z,, = ([]}_, X))V, then

Z, L5 (n— o0, (11

P . - .
where —> denotes the convergence in probability and c is a
constant depending on p(x).

Proof. A concise proof of the theorem can be given as follows.
Firstly we have

1 n
InZ, = ;Z;lnxi.
1=

Since X; (i =1,2,...,n) follow an independent identically
distribution, also do InX; (i =1, 2,...,n). The mathematical
expectation follows that

a
E(nX;) =/lnx -p(x)dx =b,
&€

where b is a constant depends on p(x). Using the Khinchine’s
weak law of large numbers [24] as n — oo, we obtain

InZz, -5 b.
b

Then we have Z, —P> e
is completed. O

= c. The proof of our main theorem

Remark. From Egs. (7)—(9), we get
_ B 1S 500
E(S(O), t) = exp<ﬁ Zln 5:,(0) ) .

i=1

For the same initial error §(0), we have

N 1/N
E@(0),1) = <]‘[8i<r>> /8<0>. (12)

i=1
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For chaotic systems, as t — 00, 681(t),62(f),...,0n(2)
will follow an independent identically distribution similar to
Eq. (10). Consequently, all conditions of the main theorem are

satisfied, then we obtain E(8(0), 1) N c¢(N — o0) where
¢ can be considered as the theoretical saturation level of
E(8(0), 1). This is called the saturation property of RGIE for
chaotic systems. Using the theoretical saturation level, the limit
of dynamic predictability can be determined. In addition, for
2(8(0), 1) = %ln[E(S(O), 1)], based on the above analysis, we
have

- 1

X(80), 1) > ~xInc ast— oo, (13)
so A(8(0), 1) asymptotically decreases like O (1/t) as t — oo.
4. An example from the logistic map

A simple example is given by the logistic map,

Ynt1=ay,(L—y,), 0<a<4 (14)

Here we choose the parameter value of a = 4.0, for which the
logistic map is chaotic on the set (0, 1) [25,26].

Fig. 2 shows the mean nonlinear FTLE and the logarithm of
the mean RGIE with §(0) = 107° as a function of time n. As
can be seen the mean nonlinear FTLE initially remains a con-
stant and then decreases rapidly after a while and approaches
zero as n increases (Fig. 2(a)). It shows that for very small initial
error, the growth of error is initially exponential with a growth
rate consistent with the largest Lyapunov exponent, implying
that linear error dynamics are applicable during this phase. Af-
terwards the growth of error enters the nonlinear phase with a
steadily decreasing growth rate, and finally reaches a saturation
value (Fig. 2(b)). At that moment almost all predictability is
lost. Following the work of Dalcher and Kalnay [27], we deter-
mine the limit of dynamic predictability, which is defined as the
time at which error reaches 98% of its saturation level. Then we
find that the limit of dynamic predictability of the logistic map
with the initial error §(0) = 10~° is n = 18. In addition, the the-
oretical saturation level of E(8(0), 7) is found to be completely
in line with the actual one (Fig. 2(b)).

Fig. 3 illustrates the dependence of the mean nonlinear
FTLE and the mean RGIE on the magnitude of the error. It

' . . . ___(b)
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n

Fig. 2. The mean nonlinear FTLE %(8(0), n) (a) and the logarithm of the corresponding mean RGIE E(8(0), n) (b) with §(0) = 1070 as a function of time step n.
The theoretical saturation level derived from Eq. (12) and the 98% of that are indicated by the constant solid and dashed lines in (b), respectively.
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Fig. 3. The mean nonlinear FTLE 2(8(0), n) (a) and the logarithm of the corresponding mean RGIE E(8(0), n) (b) as a function of time step n and §(0) of different
magnitude. From above to below, §(0) = 10_10, 10_9, 10_8, 10_7, 10_6, 10_5, 10_4, and 10_3, respectively.
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Fig. 4. The limit of dynamic predictability and the time that the tangent linear approximation holds (a), and the theoretical saturation level and the actual saturation

level (b) as a function of §(0) of different magnitude.

is evident that the mean nonlinear FTLE is essentially con-
stant in a plateau region that widens as the initial error 6(0)
is reduced. For sufficiently large time, however, all the curves
show an asymptotic to zero (Fig. 3(a)). Also lengthens the time
that the corresponding growth of error reaches saturation as
8(0) is reduced. However small the initial error §(0) be, all
the errors finally reach saturation (Fig. 3(b)). The limit of dy-
namic predictability decreases approximately linearly as §(0)
is increased (Fig. 4(a)). For a specific initial error, the limit of
dynamic predictability is longer than the time that the tangent
linear approximation holds, which is defined as the time that the
mean nonlinear FTLE remains a constant. The results demon-
strate superiority of the nonlinear FTLE in determining the limit
of predictability of chaotic systems in comparison with linear
one. The theoretical saturation levels are all found good agree-
ment with the actual saturation levels for different initial errors

(Fig. 4(b)).
5. Conclusion

We have introduced the definition of nonlinear finite-time
Lyapunov exponent (FTLE) and the saturation property of
RGIE for chaotic systems, which can be used to efficiently and
quantitatively determine the limit of predictability of chaotic
systems. The above results are examined by using the simple
logistic map. But it is possible that the nonlinear FTLE may

be used in a multi-discipline range related to nonlinear dynam-
ics and practical time series analysis, such as the predictability
analysis of weather and climate, biological populations, stock
market returns, and so on, which will be further subjects of fu-
ture research.
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